	60×4 or $4(a \times 60)$ or $4a \times 60$ or $\frac{b}{a} = 60$ or $\frac{4b}{\frac{b}{60}}$ or $4b = 240a$ or $\frac{240a}{a}$	M1	accept any multiplication	ı signs
	240	A1	Condone $\frac{240}{1}$	
1	Additional Guidance Correct answer found by substituting appropriate values for <i>a</i> and <i>b</i>			
·				M1A1
	Incorrect answer found by substituting	M0A0		
	Award M1 for 60×4 or 240 in working, either as individual expressions or as part of longer expressions			
	eg $4 \times 60 = 240$, answer $240b$ eg $\frac{4 \times 60 \times a}{4b}$			M1A0
				M1A0
	Do not award M1 for 240 within a list beyond 240	of multiple	es of 60 that continues	

	$\frac{1(1-4)}{\sqrt{1+3}} \text{ or } \frac{-3}{\sqrt{4}}$ or $\frac{6(6-4)}{\sqrt{6+3}} \text{ or } \frac{6 \times 2}{\sqrt{9}} \text{ or } \frac{12}{3} \text{ or } \frac{4}{1}$	M1	oe eg $\frac{1^2 - 1 \times 4}{\sqrt{1+3}}$ eg $\frac{6^2 - 6 \times 4}{\sqrt{6+3}}$	
2	$\frac{-3}{2}$ or $-1\frac{1}{2}$ or -1.5 or 4	M1dep		
	$2\frac{1}{2}$ or $\frac{5}{2}$ or 2.5	A1	oe mixed number, fraction	on or decimal
	Ade	ditional G	Guidance	
	$\frac{n^2 - 4n}{\sqrt{n+3}}$ with no correct substitution			M0M0A0

	Alternative method 1				
	$(x-3)^2$	M1	may be preceded by y =		
	3	A1			
3(a)	Alternative method 2				
	$(8 = x^2 - 6x + 17 \text{ and})$ $x^2 - 6x + 9 (= 0)$	M1			
	3	A1			
3(b)	$(x+2)^2 - 4 + b$ or $-4 + b = 8$	M1			
	12	A1	SC1 12 from $(x-2)^2 - 4 + b$		
4	$(f(10) =) 3 \times 10^2 - 4 \times 10 + 8$ or $(f(10) =) 300 - 40 + 8$ or $(f(10) =) 268$ or $(f(5) =) 3 \times 5^2 - 4 \times 5 + 8$ or $(f(5) =) 75 - 20 + 8$ or $(f(5) =) 63$ or $(2f(5) =) 2 \times 63$ or 126	M1			
	268 and 126 and No	A1			
	1	Additional (Guidance		

	$\frac{y+3}{2} = x$ or $x = 2y - 3 \text{ and } x + 3 = 2y$ or $2x - 3 = 55$	M1		
5	$\frac{x+3}{2}$ or $\frac{55+3}{2}$	A1		
ŭ	$2x^2 - 3$ or $2 \times 4^2 - 3$ or $2 \times 16 - 3$	M1		
	$\frac{55+3}{2} = 29$ and $2 \times 4^2 - 3 = 29 \text{ or } 2 \times 16 - 3 = 29$	A1		
	Additional Guidance			
	29 with no working or only from incor	rect worki	ing	M0A0M0A0

Question	Answer	Mark	Comments	
	Alternative method 1: eliminates d			
	4c + d = 7		oe equations	
	and	M1		
	10c + d = 22			
	(10-4)c = 22-7		oe correct equation in c	
	or	M1dep	eg $10c + 7 - 4c = 22$	
	6c = 15 or $c = 2.5$			
	c = 2.5 and $d = -3$	A1	oe fraction or mixed number for c	
	Alternative method 2: eliminates $\it c$			
	4c+d=7			
6(a)	and	M1		
	10c + d = 22			
	(10-4)d = 70-88		oe correct equation in d	
	or $6d = -18$ or $d = -3$	M1dep	eg $4\left(\frac{22-d}{10}\right) + d = 7$	
	c = 2.5 and $d = -3$	A1	oe fraction or mixed number for c	
	Alternative method 3: works out the difference or the equation of the function through the points			
	(difference =) $\frac{22-7}{10-4}$ or 2.5	M1	(gradient =) $\frac{22-7}{10-4}$ or $(m =) 2.5$	
	c = 2.5	M1dep	oe fraction or mixed number	
	c = 2.5 and $d = -3$	A 1	oe fraction or mixed number for c	

Q	Answer	Mark	Comment	s
	Alternative method 1			
	$L = kD^2$	M1	oe equation	
	$85 = 10^2 k$ or $85 = 100k$ or $(k =) 0.85$	M1dep	oe implies M2	
	$L = 0.85D^2$	A1	oe equation	
	Alternative method 2			
	$cL = D^2$	M1	oe equation	
7(a)	$85c = 10^2$ or $85c = 100$ or $(c =) \frac{100}{85}$	M1dep	oe allow (c =) [1.176, 1.18] implies M2	
	$\frac{100}{85}L = D^2$ A1 oe equation allow [1.176, 1.18] $L = D^2$			
	Ad	ditional G	Guidance	
	Condone use of a for up to M1M1A0 eg Alt 1)		
	$L \propto kD^2$			M1
	85 α 100k			M1
	$L 0.85 D^2$			A0
	$L = 0.85D^2$ oe			M1M1A1
	$L \propto D^2$ is M0 with no further correct working			

Q	Answer	Mark	Commer	nts
	Alternative method 1 If using alt 1 in (a)			
	their $k \times 5^2$	M1	oe their <i>k</i> from (a)	
	21.25	A1ft	oe correct or ft their $k \times 5^2$	
	Alternative method 2 If using alt 2 in (a)			
	5^2 ÷ their c	M1	oe their <i>c</i> from (a)	
7(b)	21.25	A1ft	oe correct or ft 5^2 ÷ their c do not follow through an value for $\frac{100}{85}$	approximated
	Additional Guidance			
	L α 21.25 on answer line			M1A0
	Alt 2 (a) $1.18L = D^2$ (scores 3 marks in (a)) (b) $25 \div 1.18 = 21.19$ M1A0			M1A0

Q	Answer	Mark	Commen	ts
	b = 2c or $b = 16or \frac{a}{b} \times \frac{b}{c} = 3c \times 2$	M1	oe eg $\frac{a}{2c} = 3c$ or $\frac{a}{16} =$	= 3 <i>c</i>
8	$(a =) 6c^2$ or $3 \times 8 \times 2 \times 8$ or 24×16 or 6×8^2 or 6×64	M1dep	oe	
	384	A1		
	Ad	ditional G	Guidance	
	$\frac{b}{8} = 2$			МО
	$\frac{a}{b} = 24$			MO

Q	Answer	Mark	Commen	nts
	-1	B1	accept (-1, $\frac{1}{16}$)	
9 (a)	Ad	ditional G	Guidance	
	$16^{-1} = \frac{1}{16}$			B0

Q	Answer	Mark	Comments	
	x = 2y + 5 or $x - 5 = 2yor y - 5 = 2x or \frac{y - 5}{2}$	M1	oe eg $x = 2f^{-1} + 5$ or $f(x) - 5 = 2x$	
	$\frac{x-5}{2}$	A1	oe eg $\frac{x}{2} - \frac{5}{2}$ may be implied eg by $12f^{-1}(x)$ implied by $\frac{y-5}{2}$ if $\frac{x-5}{2}$ us subsequent working	
10	Correctly expands $3(2x+5) - 12 \times \text{their } \frac{x-5}{2}$ to a linear expression	M1	6x + 15 - 6x + 30 if M1A1 their $\frac{x-5}{2}$ must be a function their $\frac{x-5}{2}$ cannot be $2x + 5$ implied by a correct linear ex- value for $3(2x + 5) - 12 \times \text{their } \frac{x-5}{2}$	
	$\frac{x-5}{2}$ and 45	A1		
	Ad	lditional (Guidance	
	45 with no working			Zero
	45 from wrong working does not scor	e 4 marks	s – mark the working seen	
	First A1 Condone $y = \frac{x-5}{2}$ or $f =$	$\frac{x-5}{2}$ or	$f(x) = \frac{x-5}{2}$ or $x = \frac{x-5}{2}$	
	For $6x + 15 - 6x + 30$ allow $\frac{12x + 30}{12x + 30}$	- 12x + 60 2	but not $6x + 15 - \frac{12x - 60}{2}$	
	$x = 2y + 5 \qquad \frac{x+5}{2}$			M1A0
	$6x + 15 - \frac{12x}{2} - \frac{60}{2}$ (implied by -1)	5)		M1A0
	-2x - 5 6x + 15 + 24x + 60 (implied by 30x	+ 75)		M0A0 M1A0

Q	Answer	Mark	Commen	ts
	Alternative method 1			
	$5^2 + 7 \times 5 - c$ or $60 - c$ and $3 \times 5 + d$ or $15 + d$	M1	oe	
	25 + 35 - c = 15 + d or $60 - c = 15 + d$ or $c = 60 - y$ and $d = y - 15$ and $c + d = 60 - y + y - 15$	M1dep	oe equation with squaring multiplications correctly o	
	45	A1		
	Alternative method 2			
11	$x^{2} + 7x - c = 3x + d$ or $x^{2} + 7x - c - (3x + d) = 0$ or $x^{2} + 7x - c - 3x - d = 0$ or $3x + d - (x^{2} + 7x - c) = 0$ or $3x + d - x^{2} - 7x + c = 0$	M1	oe	
	$(c+d=) x^2 + 7x - 3x$ or $(c+d=) x^2 + 4x$ and substitutes $x = 5$	M1dep	oe	
	45	A 1		
	Ado	ditional G	uidance	
	Once $c + d = 45$ is seen, ignore furthe	r attempts	to find values for c or d	
	45 on answer line with no working or r	no incorred	ct working	M1M1A1

Q	Answer	Mark	Comments	
	Alternative method 1 – using k			
	$\frac{f(6)}{f(2)} \left(= \frac{36k}{4k} \right) = 9$ or $f(3) = 9k$	M1	condone eg k36	
	$\frac{f(6)}{f(2)} = 9 \text{ and } f(3) = 9k$ and No	A1	condone k9	
	Alternative method 2 – substituting	g a value	for k	
	Identifies a value of k other than 1 and correctly evaluates $\frac{f(6)}{f(2)}$ or $f(3)$	M1	eg $k = 2$ and $\frac{f(6)}{f(2)} = 9$ or $f(3) = 18$	
12 (a)	Identifies a value of k other than 1 and correctly evaluates $\frac{f(6)}{f(2)}$ and $f(3)$ and No	A1	eg $k = 2$ and $\frac{f(6)}{f(2)} = 9$ and $f(3) = 18$ and No	
	Add	ditional G	Guidance	
	$9k$ from $\frac{f(6)}{f(2)}$ is M0, but M1 can be av	varded if a	accompanied by $f(3) = 9k$	
	Do not allow 9 from $\frac{36}{4}$ (unless $\frac{36}{4}$	is from $\frac{36}{4}$	<u>k</u>)	
	Do not allow 9 from $\frac{36k^2}{4k^2}$			
	Students may correctly state that $\frac{f(6)}{f(2)}$	and f(3)	are (only) equal when $k = 1$	
	This may replace 'No' in their answer	, but does	s not score without 9k and 9	
	Do not allow unprocessed values, eg	6 ² , 2 ² or	32	

Q	Answer	Mark	Comments	
	$4x^2 + 28x + 45 (= 0)$	M1	must be correct	
13 (a)	$(2x+5)(2x+9) (= 0)$ or $(2x+7)^2 - 49 + 45 (= 0)$ or $\frac{-28 \pm \sqrt{28^2 - 4 \times 4 \times 45}}{2 \times 4}$ or $\frac{-28 \pm \sqrt{64}}{8}$ or $\frac{-28 \pm 8}{8}$ or $\frac{-7 \pm \sqrt{4}}{2}$	M1dep	oe implies first M1	
	(x =) -2.5 and $(x =) -4.5$	A1	oe fraction or decimal SC2 $(x =) [-1.63, -1.629]$ a $(x =) [-5.371, -5.37]$	ind
	Additional Guidance			
	SC2 from using $4x^2 + 28x + 35 (= 0)$			
	Trial and improvement with both answers correct and chosen from any list			M1M1A1
	Trial and improvement with one answer correct			M0M0A0

Q	Answer	Mark	Comment	
	Alternative method 1			
	$6\left(\frac{3x+9}{5}\right)-1$	M1	oe eg $\frac{18x + 49}{5}$	
	17	A1	SC1 8.4 oe value	
	Alternative method 2			
	$\frac{3 \times 2 + 9}{5}$ or 3 or g(3)	M1	oe eg 6 × 3 – 1	
14(a)	17	A1	SC1 8.4 oe value	
()	Additional Guidance			
	Answer 17			M1A1
	Working out f(2) and g(2) is M0 unless recovered			
	eg1 $\frac{3 \times 2 + 9}{5} = 3$ $6 \times 2 - 1 = 11$			M0A0
	eg2 3 × 11 = 33			M0A0
	17 followed by further work eg $17 \times 3 = 51$			M1A0
	SC1 is for fg(2)			

Q	Answer	Mark	Comme	nt	
	Alternative method 1				
	$\frac{5x-9}{3} \text{or} \frac{5y-9}{3}$ or $\frac{5\times 8-9}{3}$	M1	oe		
	$\frac{31}{3}$ or $10\frac{1}{3}$ or $10.3()$	A1			
440.5	Alternative method 2				
14(b)	$\frac{3x+9}{5} = 8$	M1	oe equation		
	$\frac{31}{3}$ or $10\frac{1}{3}$ or $10.3()$	A1			
	Additional Guidance				
	$\frac{31}{3}$ or $10\frac{1}{3}$ or $10.3()$			M1A1	
	Ignore conversion attempt after correct answer seen				

Q	Answer	Mark	Comme	nt
15 (a)	$\frac{\text{their } 28}{\sqrt[3]{2744}} \text{ or } \frac{\text{their } 28}{14}$	M1	oe	
	2	A1ft	ft their equation of the form $H = \frac{k}{\sqrt[3]{L}}$ or $cH = \frac{1}{\sqrt[3]{L}}$ SC1 24.5	
	Additional Guidance			
	$k = 56$ in part (a) then $H = \frac{56}{\sqrt[3]{2744}}$ and $H = 4$			M1A1ft

Q	Answer	Mark	Comments		
16(a)	$(k =) 21 \times 6 \text{ or } (k =) 126$	M1	oe may be implied eg $y = \frac{126}{x}$		
	10.5 or $\frac{21}{2}$	A1	oe value eg $\frac{126}{12}$ ignore units		
	Ad	ditional G	Guidance		
	Ignore simplification or conversion attempt after correct answer seen				
	10.5 only seen embedded eg $10.5 \times 12 = 126$			M1A0	
Q	Answer	Mark	Comments		
16(b)	$21 = A \times \frac{1}{3}$ or $(A =) 21 \times 3$ or $(A =) 63$	M1	oe eg $21 = A \times \left(\frac{1}{3}\right)^{\frac{1}{6} \times 6}$ implied by $(y =) 7$		
	(y =) 7 and middle box ticked	A1ft	ft decision using their 10.5 in must have $(y =) 7$	(a)	
	Additional Guidance				
	A correct value is sufficient for showing working				
	Decision may be indicated by selecting a box or a statement in the working lines				
	Decision cannot be implied only by an inequality				